반응형

얼굴 검출 2

One Millisecond Face Alignment with an Ensemble of Regression Trees

One Millisecond Face Alignment with an Ensemble of Regression Trees:[ c++ code|paper|video ] - Shrinkage factor : 학습률을 주어 gradient boosting -> 이 값을 이용하여 점차적으로 fitting하는 방법은 좋은 방법 같음- Feature Selection : 두 위치를 선택 할 때 확률 함수를 정의하는 방법을 사용하여 좀 더 좋은 특징을 선택헀다. 중요한 아이디어 같음- Handling missing labels : 랜드마크의 위치는 추정되지만 실제로 학습 영상에서 폐색된 경우가 있을 수 있다. 이러한 것을 학습 할때 W 메트릭스로 학습을 좀 더 효과적으로 할 수 있다. ■ Training - dlib..

Algorithm/Paper 2015.05.15

Adaboost

ㅇ Adaboost 예제 동영상ㅇ Learning Classification Functions- 대부분의 학습 알고리즘은 분류 함수(Classification function)을 학습 시키는데 사용이 된다. 하지만 본 논문에서 사용하는 Adaboost는 주어진 특징 약 160000개 중에서 좋은 특징을 선택하는 과정이 학습 과정인 것이다. - Freund 와 Schapire는 강분류기의 에러는 학습 과정의 반복 횟수가 증가함에 따라 Exponentially하게 0에 접근한다는 것을 증명하였다.- 또한 일반화 성능에 대한 더 많은 결과들이 증명되었다.(Schapire et al., 1997)- 전통적인 Adaboost 과정은 greedy Feature 선택 과정으로 쉽게 이해 가능하다.ㅇ Consider ..

Algorithm/PPT 2012.11.14
반응형